MATHEMATICS APPLICATIONS

MAWA Semester 2 (Units 3 & 4) Examination 2019

Calculator-Assumed

Marking Key

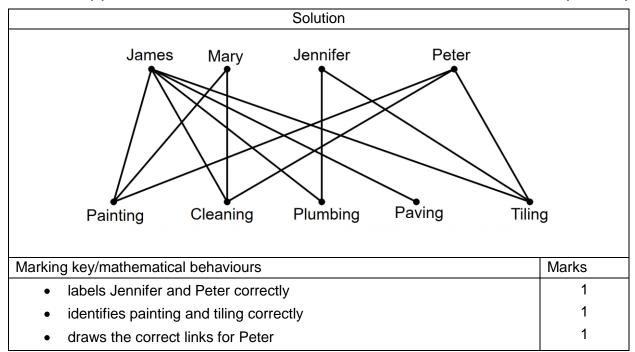
© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is


• the end of week 1 of term 4, 2019

Section Two: Calculator-assumed

(102 Marks)

(3 marks)

Question 7 (a)

Question 7 (b)

Solution		
Bipartite graph		
The information given is in two separate groups or sets. People and tasks. The vertices		
represent the two groups and the edges represent the links or connections between the two		
groups. A bipartite graph makes this clear.		
Marking key/mathematical behaviours	Marks	
gives correct type of graph	1	
• identifies the two distinct sets as being represented by dots (or vertices)	1	
 identifies the meaning of the edges. 	1	

Question 8 (a)

(5 marks)

			So	lution				
	п	0	1	2	3	4	5	
	Population size (00's)	35	38	40.4	42.32	43.86	45.09	
	6	0						
	5	0						
	(s)			•	•			
	size (00							
	Population size (00s)	0						
	do2	0						
	1	0						
		1	2	3 4 n	5	6		
Marking	key/mathematica	l behaviou	irs				Ma	rks
•	completes at leas	t two corre	ect table v	alues				1
completes all table values correctly to 2 d.p.					1			
plots at least 4 points correctly					1			
plots all points correctly					1			
recognises discrete term values therefore no line connecting points				1				

Question 8 (b)

(2 marks)

Solution		
Trend of population is increasing/growing, however, the growth rate is decreasing each time.		
Marking key/mathematical behaviours	Marks	
recognises growth	1	
states growth rate is decreasing	1	

Question 8 (c)

Solution	
No, the relationship has a steady state solution of 5000, therefore never reaching the required	
6000.	
Marking key/mathematical behaviours	Marks
states no	1
 identifies steady state solution 	1
 correctly states value of steady state solution 	1

Question 9 (a)

(2 marks)

(5 marks)

Solution	
$33722.67 \times r = 421.53$	
r = 0.012499899992	
New annual interest rate $=12 \times 0.012499899992$	
=15%	
Marking key/mathematical behaviours	Marks
• correctly determines $r = 0.012499899992$	1
 correctly converts answer to an annual interest rate 	1

Question 9 (b)

Solution	
A = 1% of 38181.94 = 381.82 (2 d.p.)	
B = 1000	
C = 38181.94 + 381.82 - 1000 = 37563.76	
D = 12.5% of 829.8425 = 10.37	
E = 829.84 + 10.37 = 840.21	
Marking key/mathematical behaviours	Marks
 correctly calculates 1% of 38181.94 	1
 identifies constant repayment 	1
 calculates amount owing at the end of fourth month 	1
correctly calculates 12.5% of 829.8425	1
• uses <i>D</i> with amount owing from Row 36 to calculate final payment	1

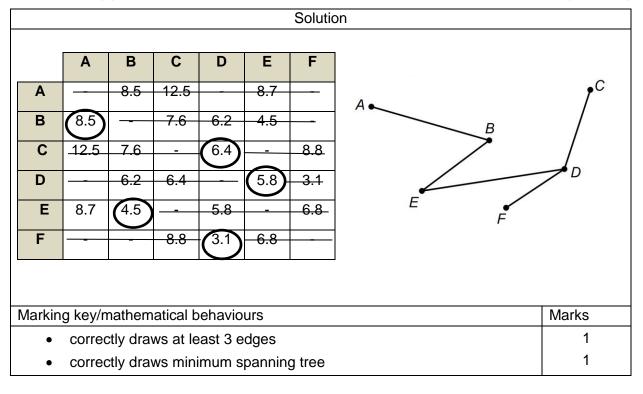
Question 9 (c)

Solution	
$T_{n+1} = 1.01T - 1000,$	
$T_0 = 40000$	
Marking key/mathematical behaviours	Marks
correctly writes the recursive rule (uses rate and repayment)	2
 correctly includes the initial term 	1

Question 9 (d)

Solution	
Total repayments $=11 \times 1000 + 25 \times 1500 + 840.21$	
= 49340.21	
Total interest paid = $49340.21 - 40000$	
= 9340.21	
Marking key/mathematical behaviours	Marks
correctly calculates total amount repaid	1
correctly determines total interest paid	1

Question 10


(5 marks)

ks
1
1
1
1
1
-

CALCULATOR-ASSUMED MARKING KEY

Question 11 (a)

(2 marks)

Question 11 (b)

(2 marks)

Solution	
Distance = 8.5 + 4.5 + 5.8 + 6.4 + 3.1	
= 28.3m	
$Cost = 28.3 \times 840$	
= 23772	
Marking key/mathematical behaviours	Marks
calculates correct total distance of minimum spanning tree	1
 calculates correct minimum cost of project 	1

Question 11 (c)

Solution		
The minimum spanning tree would no longer include edge DC, and would have BC instead.		
This also changes total minimum cost. The total distance is increased by 1.2 metres at an		
extra cost of \$1008.		
Marking key/mathematical behaviours	Marks	
identifies correct edge change	1	
states correct increase of cost	1	

Solution	
A 7-point average would be the most appropriate, reflecting a weekly cycle.	
Marking key/mathematical behaviours	Marks
indicates a 7-point average	1

makes the link with a weekly cycle •

Question 12 (b)

Question 12 (a)

Solution Trend appears to be gradually rising over time as reflected by rising minimum points in each cycle. The rise in the peaks of each cycle are not so clear but day 16 is higher that day 3, even if day 9 has a slight dip. Marks

Marking key/mathematical behaviours

- ٠ indicates a rising trend
- gives a plausible explanation of how this has been decided •

Question 12 (c)

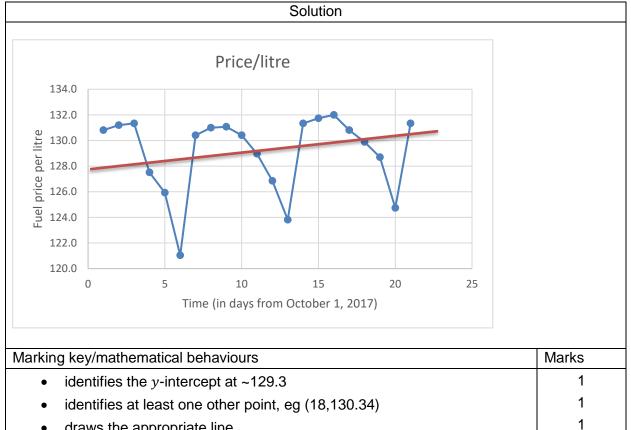
Solution												
												-
Day number	4	5	6	7	8	9	10	11	12	13	14	
Price/litre	127.5	125.9	121.0	130.4	<mark>131.0</mark>	<mark>131.1</mark>	<mark>130.4</mark>	<mark>129.0</mark>	<mark>126.9</mark>	<mark>123.8</mark>	<mark>131.5</mark>	
The weekly mean for week 2, will be the average of the price for the 7 days as highlighted. The percentage of the weekly mean for day 9 will be $\frac{131.1}{129.1} \times 100 = 101.55\%$ The percentage of the weekly mean for day 10 will be $\frac{130.4}{129.1} \times 100 = 101.01\%$												
Marking key/mathematical behaviours			Ma	arks								
 identifies the need to calculate the mean for week 2 (days 8-14) 					1							
 calculates the weekly mean as 129.1 cents 					1							

- 1 calculates the correct % weekly mean for day 9 (to at least 1 d.p.) 1
- calculates the correct % weekly mean for day 10 (to at least 1 d.p.)

(2 marks)

1

(2 marks)


(4 marks)

1 1

CALCULATOR-ASSUMED MARKING KEY

Question 12 (d)

(3 marks)

draws the appropriate line •

Question 12 (e)

(2 marks)

Solution		
At $d = 25, P = 0.1339 * 25 + 127.93 = 131.28$		
Given that the seasonal index for Wednesday is 0.9961		
The actual price per litre for day $25 = 131.28 \times 0.9961 = 130.77$		
Marking key/mathematical behaviours	Marks	
• substitutes $d = 25$ into the least-squares regression line for the moving	1	
avaerages.		
 applies the Wednesday index to calculate the actual value 	1	

Question 12 (f)

Solution		
The prediction is reliable as it is in the next cycle immediately after the end of the data used to		
calculate the least-squares regression line for the moving averages (4 days past the known		
data – but with the one cycle).		
Marking key/mathematical behaviours		
recognises prediction is reliable	1	
 recognises it is within the next cycle, even though 4 days out. 	1	

Question 13 (a)

Solution	
BACDM = 60	
BACEFGM = 20	
BECFGM = 70	
BEFGM = 30 Total max flow $= 60 + 20 + 70 + 30 + 20 + 20 + 180$	
$BEHGM = 20 \qquad \qquad = 400 ppl / \min$	
BHGM = 20	
BHM = 180	
Marking key/mathematical behaviours	Marks
evidence of systematic approach	1
 correctly lists at least 3 routes and corresponding flow 	1
 correctly lists all possible routes and corresponding flow 	1
 correctly states maximum flow of network 	1

Question 13 (b)

(3 marks)

Solution		
Cut $I = 480$		
Cut $II = 410$		
Cut III = 400		
Therefore the cut that supports max. flow of 400ppl/min is Cut III		
Marking key/mathematical behaviours	Marks	
correctly calculate at least 2 cuts	1	
correctly calculate all three cut totals	1	
states Cut III	1	

Question 13 (c)

Solution		
The upgrade will have no effect on maximum flow.		
Lift location edge <i>EH</i> has not been entirely used and lift location <i>EF</i> has no flow leading in or		
out.		
Marking key/mathematical behaviours Marks		
identifies lift locations	1	
 states no effect on max flow 	1	
provides correct reason	1	

Question 14 (a)

Page 1	1

Solution		
v = 8, f = 6, e = 12 and v + f - 2 = e i.e. $8 + 6 - 2 = 12$		
Marking key/mathematical behaviours		
 identifies the number of faces, edges and vertices 	3	
verifies Euler's rule applies	1	

0 1 1

Question 14 (b)

No, it is not a Eulerian graph.

A Eulerian graph is connected and traversable, starting and finishing at the same vertex. It must have no odd vertices. The given graph has 4 odd vertices (O, T, S and K). Marking key/mathematical behaviours Marks 1

Solution

Т

В

Solution

- identifies the graph as non-Eulerian.
- Indicates a correct reason i.e. it has 4 odd vertices •

Question 14 (c)

0 K The specified walk defines a closed circuit which is also a Hamiltonian cycle. The walk does not have any repeated vertices or edges and starts & ends at the same vertex Marking key/mathematical behaviours Marks 1 identifies the required walk • indicates a closed circuit/Hamiltonian cycle 1 • 1 identifies characteristics •

CALCULATOR-ASSUMED **MARKING KEY**

(4 marks)

(2 marks)

1

Question 15 (a)

r = 0.5228

Page 12	

Marking	g key/mathematical behaviours
٠	calculates correlation coefficient

Therefore relationship is weak, positive, linear.

• states there is a weak positive linear relationship between variables

Question 15 (b)

Solution			
Explanatory variable = height			
Response variable = mass			
Marking key/mathematical behaviours Ma			
correctly identifies explanatory variable	1		
correctly identifies response variable	1		

Solution

correctly to 4 d.p.

Question 15 (c)

Solution		
$\hat{m} = 0.6795h - 42.3567$		
Marking key/mathematical behaviours	Marks	
correctly determines gradient	1	
correctly determines <i>y</i> -intercept	1	

Question 15 (d)

Solution

 $r_{hm}^2 = 0.2734$

This value suggests that 27.34% of the change in mass can be attributed to the change in height.

Since 27.34% is a low percentage, a linear model may not be appropriate.

Marking key/mathematical behaviours	Marks
correctly calculates coefficient of determination	1
 correctly explain significance of the coefficient of determination 	1
clearly states that a linear model may not be appropriate for these data	1

CALCULATOR-ASSUMED MARKING KEY

Marks

(3 marks)

	1
etween variables	2

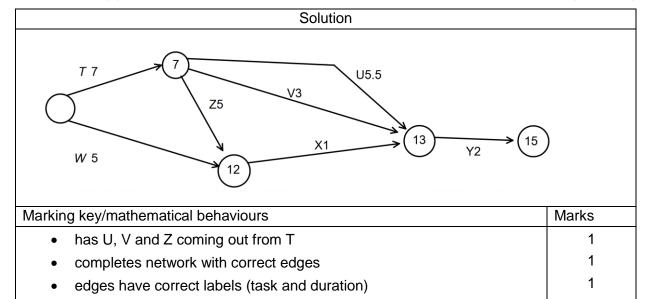
(2 marks)

(3 marks)

Question 15 (e)

(4 marks)

Solution	
$h = 182: \hat{m} = 0.6795(182) - 42.3567 = 81.31kg$	
Prediction is reliable as it involves interpolation	
$h = 200: \hat{m} = 0.6795(200) - 42.3567 = 93.54kg$	
Prediction is unreliable as it involves extrapolation	
Marking key/mathematical behaviours	Marks
 correctly calculates predicted value for h = 182 	1
• concludes prediction for $h = 182$ is reliable due to interpolation	1
 correctly calculates predicted value for h = 200 	1
• concludes prediction for $h = 200$ is unreliable due to extrapolation	1


CALCULATOR-ASSUMED MARKING KEY

Question 16 (a)

(3 marks)

(2 marks)

(2 marks)

Question 16 (b)

Solution	
Critical path is <i>TZXY</i>	
Minimum completion time is 15 days	
Marking key/mathematical behaviours	Marks
states the correct critical path	2
 calculates correct minimum completion time 	2

Question 16 (c)

Solution (i) float time for task Z = 0 as on critical path (ii) task W has a float time of 7 days, so the latest start date is 7 days (1 week) Marking key/mathematical behaviours Marks • correctly states there is no float time for Task Z 1 • correctly determines latest start time 1

Question 16 (d)

Solution		
Critical path is now <i>TVY</i> and the minimum completion time has been increased by 2 days		
Marking key/mathematical behaviours	Marks	
 correctly states new critical path 	1	
 identifies increase in completion time 	1	
 states increase of 2 days 	1	

Question 17 (a)

(2 marks)

(2 marks)

(2 marks)

Solution	
Third year = $30000 \times 1.03^2 = 31827$	
Fourth year $30000 \times 1.03^3 = 32781.81$	
Marking key/mathematical behaviours	Marks
 calculates the amount withdrawn in third year 	1
 calculates the amount withdrawn in fourth year 	1

Question 17 (b)

Solution Using a spreadsheet or sequence function (or otherwise), the amount left in the annuity after the 10th withdrawal is \$244090.48 Marking key/mathematical behaviours Marks • uses an appropriate method 1 • correctly calculates the amount remaining after the 10th withdrawal 1

Question 17 (c)

Solution Using a spreadsheet or sequence function (or otherwise), it will take 17 years for the annuity to reach a balance of 0 (after 16 withdrawals there is only 5897.61 remaining) Marking key/mathematical behaviours Marks • correctly calculates the number of years for the annuity to reach a balance of 0. 2